Модуль "Алгебра"

21 Упростите выражение
$$\frac{\sqrt{\sqrt{10} - 2} \cdot \sqrt{\sqrt{10} + 2}}{\sqrt{24}}$$
.

Решение.

$$\frac{\sqrt{\sqrt{10}-2}\cdot\sqrt{\sqrt{10}+2}}{\sqrt{24}} = \frac{\sqrt{(\sqrt{10}-2)(\sqrt{10}+2)}}{\sqrt{24}} = \frac{\sqrt{10-4}}{\sqrt{24}} = \frac{\sqrt{6}}{\sqrt{24}} = \frac{1}{\sqrt{4}} = \frac{1}{2}.$$

OTBET: $\frac{1}{2}$

Критерии оценивания выполнения задания	Баллы
Все преобразования выполнены верно, получен верный ответ	2
По ходу решения допущена одна ошибка вычислительного характера или описка, с её учётом решение доведено до конца	1
Другие случаи, не соответствующие указанным критериям	0
Максимальный балл	2

<u>Комментарий.</u> Ошибки в применении формул считаются существенными; при их наличии решение не засчитывается.

22 Один из корней уравнения $5x^2 - 2x + 3p = 0$ равен 1. Найдите второй корень.

Решение.

Подставим известный корень в уравнение: 5-2+3p=0. Получим уравнение относительно p. Решим его: 3p=-3; p=-1. Подставим p в уравнение: $5x^2-2x-3=0$, откуда

$$x = \frac{2 \pm \sqrt{4 + 4 \cdot 5 \cdot 3}}{10} = \frac{2 \pm 8}{10}, \quad x_1 = 1, \quad x_2 = -0, 6.$$

Ответ: -0, 6.

Критерии оценивания выполнения задания	Баллы
Все преобразования выполнены верно, получен верный ответ	3
По ходу решения допущена одна ошибка вычислительного характера или описка, с её учётом решение доведено до конца	2
Другие случаи, не соответствующие указанным критериям	0
Максимальный балл	3

23 Найдите наименьшее значение выражения и значения x и y, при которых оно достигается |6x + y + 5| + |3x + 2y + 1|.

Решение.

Математика. 9 класс. Вариант 5

Сумма |6x + y + 5| + |3x + 2y + 1| принимает наименьшее значение, равное 0, только в том случае, когда оба слагаемых одновременно равны 0. Получаем систему уравнений

$$\begin{cases} 6x + y + 5 = 0, \\ 3x + 2y + 1 = 0 \end{cases}$$

Решим её

$$\begin{cases} 6x + y + 5 = 0, & 3y - 3 = 0, \\ 6x + 4y + 2 = 0, & 6x + y + 5 = 0, \end{cases} \begin{cases} y = 1, & y = 1, \\ 6x + 6 = 0, & x = -1. \end{cases}$$

Ответ: 0; (-1;1).

7 (7)	
Критерии оценивания выполнения задания	Баллы
Все преобразования выполнены верно, получен верный ответ	4
По ходу решения допущена одна ошибка вычислительного характера или описка, с её учётом решение доведено до конца	3
Другие случаи, не соответствующие указанным критериям	0
Максимальный балл	4

Модуль "Геометрия"

24 Найдите величину угла DOB, если OE – биссектриса угла AOC, OD – биссектриса угла COB.

Решение.

 $\angle COA = 2.64^{\circ} = 128^{\circ}; \angle BOC = 180^{\circ} - 128^{\circ} = 52^{\circ}; \angle DOB = 52^{\circ} : 2 = 26^{\circ}.$

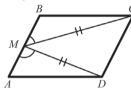
Ответ: 26°.

Критерии оценивания выполнения задания	Баллы
Решение верно, получен верный ответ	2
Допущена одна ошибка вычислительного характера или описка, с её учетом решение доведено до конца	1
Другие случаи, не соответствующие указанным критериям	0
Максимальный балл	2

25

В параллелограмме ABCD точка M— середина стороны AB. Известно, что MC = MD. Докажите, что данный параллелограмм — прямоугольник.

Пусть точка M — середина стороны AB параллелограмма ABCD — равноудалена от его вершин C и D. Тогда, треугольник CMD — равнобедренный, поэтому $\angle MCD = \angle MDC$. Поскольку прямая CD параллельна стороне AB, то $\angle BMC = \angle MCD$ и $\angle AMD = \angle MDC$ как накрест лежащие. Таким образом, $\triangle BMC = \triangle AMD$ по первому признаку равенства треугольников ($\angle BMC = \angle AMD$, AM = BM, AM = BM).



Значит, $\angle CBM = \angle DAM$. Их сумма равна 180°, т.к. это два угла параллелограмма, прилежащие к одной стороне. Следовательно, $\angle CBM = \angle DAM = 90^\circ$. По свойству параллелограмма углы BCD и CDA также прямые. Значит, ABCD — прямоугольник.

Комментарий: Равенство треугольников *ВМС* и *АМD* может быть доказано иначе, например, по третьему признаку равенства треугольников.

Другое возможное доказательство:

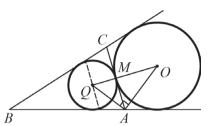
Пусть точка O — середина CD. Четырехугольник OMBC является параллелограммом, поскольку его стороны OC и MB параллельны и равны. Треугольник MCD — равнобедренный, поэтому OM — его высота. Значит, OMBC — прямоугольник, следовательно, угол CBM — прямой.

Критерии оценивания выполнения задания	Баллы
Доказательство верное, все шаги обоснованы	3
Доказательство содержит неточности или пробелы, например, отсутствуют ссылки на свойства параллельных прямых или параллелограмма	2
Другие случаи, не соответствующие указанным критериям	0
Максимальный балл	3

26 Основание *AC* равнобедренного треугольника *ABC* равно 12. Окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания *AC* в его середине. Найдите радиус окружности, вписанной в треугольник *ABC*.

Решение.

Математика. 9 класс. Вариант 5



Данная окружность касается стороны AC в её середине M и продолжений сторон BA и BC треугольника ABC.

Пусть O — центр этой окружности, а Q — центр окружности, вписанной в треугольник ABC. Угол OAQ — прямой как угол между биссектрисами смежных углов. Треугольник OAQ — прямоугольный, AM — его высота. Из этого треугольника находим,

что
$$AM^2 = MQ \cdot MO$$
. Следовательно, $QM = \frac{AM^2}{OM} = \frac{9}{2} = 4, 5$.

Ответ: 4, 5.

Критерии оценивания выполнения задания	Баллы
Ход решения верный, все его шаги выполнены правильно, получен верный ответ	4
Ход решения верный, все его шаги выполнены правильно, но даны неполные объяснения или допущена одна вычислительная ошибка	3
Другие случаи, не соответствующие указанным выше критериям	0
Максимальный балл	4

Модуль "Алгебра"

21 Упростите выражение
$$\frac{\sqrt{54}}{\sqrt{\sqrt{15} + 3} \cdot \sqrt{\sqrt{15} - 3}}$$
.

Решение.

$$\frac{\sqrt{54}}{\sqrt{\sqrt{15}+3}\cdot\sqrt{\sqrt{15}-3}} = \frac{\sqrt{54}}{\sqrt{(\sqrt{15}+3)(\sqrt{15}-3)}} = \frac{\sqrt{54}}{\sqrt{15}-9} = \frac{\sqrt{54}}{\sqrt{6}} = \sqrt{9} = 3.$$

Ответ: 3

Критерии оценивания выполнения задания	Баллы
Все преобразования выполнены верно, получен верный ответ	2
По ходу решения допущена одна ошибка вычислительного характера или описка, с её учётом решение доведено до конца	1
Другие случаи, не соответствующие указанным критериям	0
Максимальный балл	2

<u>Комментарий.</u> Ошибки в применении формул считаются существенными; при их наличии решение не засчитывается.

22 Один из корней уравнения $4x^2 - x + 3m = 0$ равен 1. Найдите второй корень.

Решение.

Подставим известный корень в уравнение: 4-1+3m=0. Получим уравнение относительно m. Решим его: 3m=-3; m=-1. Подставим m в уравнение: $4x^2-x-3=0$, откуда

$$x = \frac{1 \pm \sqrt{1 + 4 \cdot 3 \cdot 4}}{8} = \frac{1 \pm 7}{8}, \quad x_1 = 1, \quad x_2 = -\frac{3}{4}.$$

Ответ: $-\frac{3}{4}$.

Критерии оценивания выполнения задания	Баллы
Все преобразования выполнены верно, получен верный ответ	3
По ходу решения допущена одна ошибка вычислительного характера или описка, с её учётом решение доведено до конца	2
Другие случаи, не соответствующие указанным критериям	0
Максимальный балл	3

23 Найдите наименьшее значение выражения и значения x и y, при которых оно достигается: |3x + 4y - 1| + |x - 5y + 6|.

Решение.

Математика. 9 класс. Вариант 6

Сумма |3x + 4y - 1| + |x - 5y + 6| принимает наименьшее значение, равное 0, только в том случае, когда оба слагаемых одновременно равны 0. Получаем систему уравнений

$$\begin{cases} 3x + 4y - 1 = 0, \\ x - 5y + 6 = 0. \end{cases}$$

Решим её

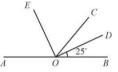
$$\begin{cases} 3x + 4y - 1 = 0, \\ 3x - 15y + 18 = 0; \end{cases} \begin{cases} 19y - 19 = 0, \\ x - 5y + 6 = 0; \end{cases} \begin{cases} y = 1, \\ x = -1. \end{cases}$$

Ответ: 0; (-1;1).

Критерии оценивания выполнения задания	Баллы
Все преобразования выполнены верно, получен верный ответ	4
По ходу решения допущена одна ошибка вычислительного характера или описка, с её учётом решение доведено до конца	3
Другие случаи, не соответствующие указанным критериям	0
Максимальный балл	4

Модуль "Геометрия"

24 Найдите величину угла AOE, если OE – биссектриса угла AOC, OD – биссектриса угла COB.



Решение.

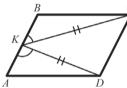
 $\angle COB = 2.25^{\circ} = 50^{\circ}; \angle AOC = 180^{\circ} - 50^{\circ} = 130^{\circ}; \angle AOE = 130^{\circ} : 2 = 65^{\circ}.$

Ответ: 65°.

Критерии оценивания выполнения задания	Баллы
Решение верно, получен верный ответ	2
Допущена одна ошибка вычислительного характера или описка, с её учетом решение доведено до конца	1
Другие случаи, не соответствующие указанным критериям	0
Максимальный балл	2

25 В параллелограмме ABCD точка K— середина стороны AB. Известно, что KC = KD. Докажите, что данный параллелограмм — прямоугольник.

Пусть точка K — середина стороны AB параллелограмма ABCD — равноудалена от его вершин C и D. Тогда, треугольник CKD — равнобедренный, поэтому $\angle KCD = \angle KDC$. Поскольку прямая CD параллельна стороне AB, то $\angle BKC = \angle KCD$ и $\angle AKD = \angle KDC$ как накрест лежащие. Таким образом, $\triangle BKC = \triangle AKD$ по первому признаку равенства треугольников ($\angle BKC = \angle AKD$, AK = BK, KC = KD).



Значит, $\angle CBK = \angle DAK$. Их сумма равна 180°, т.к. это два угла параллелограмма, прилежащие к одной стороне. Следовательно, $\angle CBK = \angle DAK = 90$ °. По свойству параллелограмма углы BCD и CDA также прямые. Значит, ABCD — прямоугольник. $Kommenmapu\ddot{u}$: Равенство треугольников BKC и AKD может быть доказано иначе, например, по третьему признаку равенства треугольников.

Другое возможное доказательство:

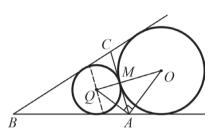
Пусть точка O — середина CD. Четырехугольник OKBC является параллелограммом, поскольку его стороны OC и KB параллельны и равны. Треугольник KCD — равнобедренный, поэтому OK — его высота. Значит, OKBC — прямоугольник, следовательно, угол CBK — прямой.

Критерии оценивания выполнения задания	Баллы
Доказательство верное, все шаги обоснованы	3
Доказательство содержит неточности или пробелы, например, отсутствуют ссылки на свойства параллельных прямых или параллелограмма	2
Другие случаи, не соответствующие указанным критериям	0
Максимальный балл	3

Математика. 9 класс. Вариант 6

Основание AC равнобедренного треугольника ABC равно 8. Окружность радиуса 6 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.

Решение.



Данная окружность касается стороны AC в её середине M и продолжений сторон BA и BC треугольника ABC.

Пусть O — центр этой окружности, а Q — центр окружности, вписанной в треугольник ABC. Угол OAQ — прямой как угол между биссектрисами смежных углов. Треугольник OAQ — прямоугольный, AM — его высота. Из этого треугольника находим, что $AM^2 = MQ \cdot MO$. Следовательно, $QM = \frac{AM^2}{OM} = \frac{8}{3}$.

Ответ: $\frac{8}{3}$.

Критерии оценивания выполнения задания	Баллы
Ход решения верный, все его шаги выполнены правильно, получен верный ответ	4
Ход решения верный, все его шаги выполнены правильно, но даны неполные объяснения или допущена одна вычислительная ошибка	3
Другие случаи, не соответствующие указанным выше критериям	0
Максимальный балл	4

Модуль "Алгебра"

21 Упростите выражение
$$\frac{\sqrt{\sqrt{15} - 3} \cdot \sqrt{\sqrt{15} + 3}}{\sqrt{24}}$$
.

Решение.

$$\frac{\sqrt{\sqrt{15}-3}\cdot\sqrt{\sqrt{15}+3}}{\sqrt{24}} = \frac{\sqrt{(\sqrt{15}-3)(\sqrt{15}+3)}}{\sqrt{24}} = \frac{\sqrt{15-9}}{\sqrt{24}} = \frac{\sqrt{6}}{\sqrt{24}} = \frac{1}{\sqrt{4}} = \frac{1}{2}.$$

Ответ: $\frac{1}{2}$

Критерии оценивания выполнения задания	Баллы
Все преобразования выполнены верно, получен верный ответ	2
По ходу решения допущена одна ошибка вычислительного характера или описка, с её учётом решение доведено до конца	1
Другие случаи, не соответствующие указанным критериям	0
Максимальный балл	2

<u>Комментарий.</u> Ошибки в применении формул считаются существенными; при их наличии решение не засчитывается.

22 Один из корней уравнения $5x^2 + 7x + 2m = 0$ равен -1. Найдите второй корень.

Решение.

Подставим известный корень в уравнение: 5-7+2m=0. Получим уравнение относительно m. Решим его: 2m=2; m=1. Подставим m в уравнение: $5x^2+7x+2=0$, откуда

$$x = \frac{-7 \pm \sqrt{49 - 4 \cdot 5 \cdot 2}}{10} = \frac{-7 \pm 3}{10}, \quad x_1 = -1, \quad x_2 = -0, 4.$$

Ответ: -0, 4.

Критерии оценивания выполнения задания	Баллы
Все преобразования выполнены верно, получен верный ответ	3
По ходу решения допущена одна ошибка вычислительного характера или описка, с её учётом решение доведено до конца	2
Другие случаи, не соответствующие указанным критериям	0
Максимальный балл	3

патематика. Укласс. Бариант /

Найдите наименьшее значение выражения и значения x и y, при которых оно достигается |6x + 5y + 7| + |2x + 3y + 1|.

Решение.

Сумма |6x + 5y + 7| + |2x + 3y + 1| принимает наименьшее значение, равное 0, только в том случае, когда оба слагаемых одновременно равны 0. Получаем систему уравнений

$$\begin{cases} 6x + 5y + 7 = 0, \\ 2x + 3y + 1 = 0. \end{cases}$$

Решим её:

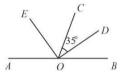
$$\begin{cases} 6x + 5y + 7 = 0, \\ 6x + 9y + 3 = 0; \end{cases} \begin{cases} 4y - 4 = 0, \\ 6x + 9y + 3 = 0; \end{cases} \begin{cases} y = 1, \\ 6x + 12 = 0; \end{cases} \begin{cases} y = 1, \\ x = -2. \end{cases}$$

Ответ: 0; (-2;1).

Критерии оценивания выполнения задания	Баллы
Все преобразования выполнены верно, получен верный ответ	4
По ходу решения допущена одна ошибка вычислительного характера или описка, с её учётом решение доведено до конца	3
Другие случаи, не соответствующие указанным критериям	0
Максимальный балл	4

Модуль "Геометрия"

24 Найдите величину угла COE, если OE – биссектриса угла AOC, OD – биссектриса угла COB.



Решение.

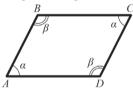
 $\angle COB = 2.35^{\circ} = 70^{\circ}; \angle AOC = 180^{\circ} - 70^{\circ} = 110^{\circ}; \angle COE = 110^{\circ} : 2 = 55^{\circ}.$

Ответ: 55°.

Критерии оценивания выполнения задания	Баллы
Решение верно, получен верный ответ	2
Допущена одна ошибка вычислительного характера или описка, с её учетом решение доведено до конца	1
Другие случаи, не соответствующие указанным критериям	0
Максимальный балл	2

25 Противоположные углы четырехугольника попарно равны. Докажите, что этот четырехугольник – параллелограмм.

Пусть противоположные углы A и C четырехугольника ABCD равны α , а противоположные углы B и D равны β . Поскольку сумма углов любого четырехугольника равна 360° , то $2\alpha+2\beta=360^\circ$. Значит, $\alpha+\beta=180^\circ$. Так как сумма внутренних односторонних углов при секущей равна 180° , то по признаку параллельных прямых AB параллельна CD, BC параллельна AD. Значит, четырёхугольник ABCD является параллелограммом по определению.

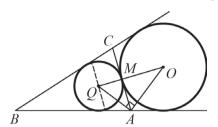


Критерии оценивания выполнения задания	Баллы
Доказательство верное, все шаги обоснованы	3
Доказательство содержит неточности или пробелы, например, отсутствуют ссылки на свойства параллельных прямых или параллелограмма	2
Другие случаи, не соответствующие указанным критериям	0
Максимальный балл	3

26 Основание *AC* равнобедренного треугольника *ABC* равно 6. Окружность радиуса 5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания *AC* в его середине. Найдите радиус окружности, вписанной в треугольник *ABC*.

Решение.

Математика. 9 класс. Вариант 7



Данная окружность касается стороны AC в её середине M и продолжений сторон BA и BC треугольника ABC.

Пусть O — центр этой окружности, а Q — центр окружности, вписанной в треугольник ABC. Угол OAQ — прямой как угол между биссектрисами смежных углов. Треугольник OAQ — прямоугольный, AM — его высота. Из этого треугольника находим,

что
$$AM^2 = MQ \cdot MO$$
. Следовательно, $QM = \frac{AM^2}{OM} = \frac{9}{5} = 1, 8$.

Ответ: 1, 8.

Критерии оценивания выполнения задания	Баллы
Ход решения верный, все его шаги выполнены правильно, получен верный ответ	4
Ход решения верный, все его шаги выполнены правильно, но даны неполные объяснения или допущена одна вычислительная ошибка	3
Другие случаи, не соответствующие указанным выше критериям	0
Максимальный балл	4

Модуль "Алгебра"

21 Упростите выражение
$$\frac{\sqrt{54}}{\sqrt{\sqrt{31}+5}\cdot\sqrt{\sqrt{31}-5}}$$
.

Решение.

$$\frac{\sqrt{54}}{\sqrt{\sqrt{31}+5}\cdot\sqrt{\sqrt{31}-5}} = \frac{\sqrt{54}}{\sqrt{(\sqrt{31}+5)(\sqrt{31}-5)}} = \frac{\sqrt{54}}{\sqrt{31-25}} = \frac{\sqrt{54}}{\sqrt{6}} = \sqrt{9} = 3.$$

Ответ: 3.

Критерии оценивания выполнения задания	Баллы
Все преобразования выполнены верно, получен верный ответ	2
По ходу решения допущена одна ошибка вычислительного характера или описка, с её учётом решение доведено до конца	1
Другие случаи, не соответствующие указанным критериям	0
Максимальный балл	2

<u>Комментарий.</u> Ошибки в применении формул считаются существенными; при их наличии решение не засчитывается.

Один из корней уравнения $3x^2 + 5x + 2m = 0$ равен – 1. Найдите второй корень.

Решение.

Подставим известный корень в уравнение: 3-5+2m=0. Получим уравнение относительно m.Решим его: 2m=2; m=1. Подставим m в уравнение: $3x^2+5x+2=0$, откуда

$$x = \frac{-5 \pm \sqrt{25 - 4 \cdot 3 \cdot 2}}{6} = \frac{-5 \pm 1}{6}, \quad x_1 = -1, \quad x_2 = -\frac{2}{3}.$$

Ответ: $-\frac{2}{3}$.

Критерии оценивания выполнения задания	Баллы
Все преобразования выполнены верно, получен верный ответ	3
По ходу решения допущена одна ошибка вычислительного характера или описка, с её учётом решение доведено до конца	2
Другие случаи, не соответствующие указанным критериям	0
Максимальный балл	3

Найдите наименьшее значение выражения и значения x и y, при которых оно достигается: |3x - 4y - 2| + |x - 5y + 3|.

Решение.

Математика. 9 класс. Вариант 8

Сумма |3x - 4y - 2| + |x - 5y + 3| принимает наименьшее значение, равное 0, только в том случае, когда оба слагаемых одновременно равны 0. Получаем систему уравнений

$$\begin{cases} 3x - 4y - 2 = 0 \\ x - 5y + 3 = 0. \end{cases}$$

Решим её:

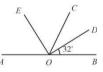
$$\begin{cases} 3x - 4y - 2 = 0, & \begin{cases} 11y - 11 = 0, \\ 3x - 15y + 9 = 0, \end{cases} \begin{cases} y = 1, \\ x - 5y + 3 = 0, \end{cases} \begin{cases} y = 2. \end{cases}$$

Ответ: 0; (2;1).

Критерии оценивания выполнения задания	Баллы
Все преобразования выполнены верно, получен верный ответ	4
По ходу решения допущена одна ошибка вычислительного характера или описка, с её учётом решение доведено до конца	3
Другие случаи, не соответствующие указанным критериям	0
Максимальный балл	4

Модуль "Геометрия"

24 Найдите величину угла COE, если OE – биссектриса угла AOC, OD – биссектриса угла COB.



Решение.

∠*COB*=2·32°=64°; ∠*AOC*=180°-64°=116°; ∠*COE*=116°:2=58°.

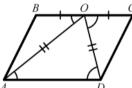
Ответ: 58°.

Критерии оценивания выполнения задания	Баллы
Решение верно, получен верный ответ	2
Допущена одна ошибка вычислительного характера или описка, с её учетом решение доведено до конца	1
Другие случаи, не соответствующие указанным критериям	0
Максимальный балл	2

25

Середина стороны параллелограмма равноудалена от концов его противоположной стороны. Докажите, что данный параллелограмм – прямоугольник.

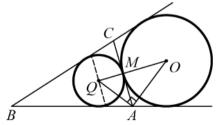
Пусть точка O — середина стороны BC параллелограмма ABCD — равноудалена от его вершин A и D. Тогда треугольник AOD равнобедренный, поэтому $\angle AOD = \angle ODA$. Поскольку прямая BC параллельна стороне AD, то углы BOA и COD равны указанным углам как накрест лежащие. Таким образом, $\triangle BOA = \triangle COD$ по первому признаку равенства треугольников. Значит, $\angle ABO = \angle ODA$. Пусть их величина равна α . Прямые AB и CD параллельны, поэтому $\alpha + \alpha = 180^\circ$, т.е. $\alpha = 90^\circ$. По свойству параллелограмма углы BAD и CDA также прямые. Значит, ABCD — прямоугольник.



Критерии оценивания выполнения задания.	Баллы.
Доказательство верное, все шаги обоснованы	3
Доказательство содержит неточности или пробелы, например, отсутствуют ссылки на свойства параллельных прямых или параллелограмма.	2
Другие случаи, не соответствующие указанным критериям.	0.
Максимальный балл.	3.

26 Основание *AC* равнобедренного треугольника *ABC* равно 10. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания *AC* в его середине. Найдите радиус окружности, вписанной в треугольник *ABC*.

Решение.



Данная окружность касается стороны AC в её середине M и продолжений сторон BA и BC треугольника ABC.

Математика. 9 класс. Вариант 8

Пусть O — центр этой окружности, а Q — центр окружности, вписанной в треугольник ABC. Угол OAQ — прямой как угол между биссектрисами смежных углов. Треугольник OAQ — прямоугольный, AM — его высота. Из этого треугольника находим, что AM 2 = $MO \cdot MO$.

Следовательно,
$$QM = \frac{AM^2}{OM} = \frac{10}{3}$$
.

Ответ:
$$\frac{10}{3}$$

Критерии оценивания выполнения задания.	Баллы.
Ход решения верный, все его шаги выполнены правильно, получен верный ответ	4
Ход решения верный, все его шаги выполнены правильно, но даны неполные объяснения или допущена одна вычислительная ошибка	3.
Другие случаи, не соответствующие указанным выше критериям	0
Максимальный балл.	4